\(\int \frac {A+B \sec (c+d x)}{\sqrt {b \sec (c+d x)}} \, dx\) [4]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 82 \[ \int \frac {A+B \sec (c+d x)}{\sqrt {b \sec (c+d x)}} \, dx=\frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{b d} \]

[Out]

2*A*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d/cos(d*x+c)^(1/2)/(
b*sec(d*x+c))^(1/2)+2*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*
cos(d*x+c)^(1/2)*(b*sec(d*x+c))^(1/2)/b/d

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 82, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {3872, 3856, 2719, 2720} \[ \int \frac {A+B \sec (c+d x)}{\sqrt {b \sec (c+d x)}} \, dx=\frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{b d} \]

[In]

Int[(A + B*Sec[c + d*x])/Sqrt[b*Sec[c + d*x]],x]

[Out]

(2*A*EllipticE[(c + d*x)/2, 2])/(d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + d*x]]) + (2*B*Sqrt[Cos[c + d*x]]*Elliptic
F[(c + d*x)/2, 2]*Sqrt[b*Sec[c + d*x]])/(b*d)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rubi steps \begin{align*} \text {integral}& = A \int \frac {1}{\sqrt {b \sec (c+d x)}} \, dx+\frac {B \int \sqrt {b \sec (c+d x)} \, dx}{b} \\ & = \frac {A \int \sqrt {\cos (c+d x)} \, dx}{\sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {\left (B \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{b} \\ & = \frac {2 A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{b d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.32 (sec) , antiderivative size = 54, normalized size of antiderivative = 0.66 \[ \int \frac {A+B \sec (c+d x)}{\sqrt {b \sec (c+d x)}} \, dx=\frac {2 \left (A E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )\right )}{d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}} \]

[In]

Integrate[(A + B*Sec[c + d*x])/Sqrt[b*Sec[c + d*x]],x]

[Out]

(2*(A*EllipticE[(c + d*x)/2, 2] + B*EllipticF[(c + d*x)/2, 2]))/(d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + d*x]])

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 17.62 (sec) , antiderivative size = 408, normalized size of antiderivative = 4.98

method result size
risch \(-\frac {i A \sqrt {2}}{d \sqrt {\frac {b \,{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}}-\frac {i \left (\frac {i B \sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}\, \sqrt {2}\, \sqrt {i \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}\, \sqrt {i {\mathrm e}^{i \left (d x +c \right )}}\, \operatorname {EllipticF}\left (\sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}, \frac {\sqrt {2}}{2}\right )}{\sqrt {b \,{\mathrm e}^{3 i \left (d x +c \right )}+b \,{\mathrm e}^{i \left (d x +c \right )}}}+A \left (-\frac {2 \left (b \,{\mathrm e}^{2 i \left (d x +c \right )}+b \right )}{b \sqrt {{\mathrm e}^{i \left (d x +c \right )} \left (b \,{\mathrm e}^{2 i \left (d x +c \right )}+b \right )}}+\frac {i \sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}\, \sqrt {2}\, \sqrt {i \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}\, \sqrt {i {\mathrm e}^{i \left (d x +c \right )}}\, \left (-2 i \operatorname {EllipticE}\left (\sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}, \frac {\sqrt {2}}{2}\right )+i \operatorname {EllipticF}\left (\sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}, \frac {\sqrt {2}}{2}\right )\right )}{\sqrt {b \,{\mathrm e}^{3 i \left (d x +c \right )}+b \,{\mathrm e}^{i \left (d x +c \right )}}}\right )\right ) \sqrt {2}\, \sqrt {b \,{\mathrm e}^{i \left (d x +c \right )} \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )}}{d \sqrt {\frac {b \,{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}\, \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )}\) \(408\)
parts \(\frac {2 A \left (i \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )-i \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )+2 i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right )-2 i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right )+i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sec \left (d x +c \right )-i \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right ) \sec \left (d x +c \right )+\sin \left (d x +c \right )\right )}{d \left (\cos \left (d x +c \right )+1\right ) \sqrt {b \sec \left (d x +c \right )}}-\frac {2 i B \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right )}{d \sqrt {b \sec \left (d x +c \right )}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\) \(458\)
default \(\frac {2 i A \sqrt {\left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1\right ) \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right )}\, \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}\, \sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right )-2 i A \sqrt {\left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1\right ) \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right )}\, \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}\, \sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}\, \operatorname {EllipticE}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right )+2 i B \sqrt {\left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1\right ) \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right )}\, \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}\, \sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}\, \operatorname {EllipticF}\left (i \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), i\right )+2 A \sqrt {\left (1-\cos \left (d x +c \right )\right )^{4} \csc \left (d x +c \right )^{4}-1}\, \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}-2 A \sqrt {\left (1-\cos \left (d x +c \right )\right )^{4} \csc \left (d x +c \right )^{4}-1}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}{d \sqrt {\left (1-\cos \left (d x +c \right )\right )^{4} \csc \left (d x +c \right )^{4}-1}\, \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right ) \sqrt {-\frac {\left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1\right ) b}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}}\) \(575\)

[In]

int((A+B*sec(d*x+c))/(b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-I*A/d*2^(1/2)/(b*exp(I*(d*x+c))/(exp(I*(d*x+c))^2+1))^(1/2)-I/d*(I*B*(-I*(exp(I*(d*x+c))+I))^(1/2)*2^(1/2)*(I
*(exp(I*(d*x+c))-I))^(1/2)*(I*exp(I*(d*x+c)))^(1/2)/(b*exp(I*(d*x+c))^3+b*exp(I*(d*x+c)))^(1/2)*EllipticF((-I*
(exp(I*(d*x+c))+I))^(1/2),1/2*2^(1/2))+A*(-2*(b*exp(I*(d*x+c))^2+b)/b/(exp(I*(d*x+c))*(b*exp(I*(d*x+c))^2+b))^
(1/2)+I*(-I*(exp(I*(d*x+c))+I))^(1/2)*2^(1/2)*(I*(exp(I*(d*x+c))-I))^(1/2)*(I*exp(I*(d*x+c)))^(1/2)/(b*exp(I*(
d*x+c))^3+b*exp(I*(d*x+c)))^(1/2)*(-2*I*EllipticE((-I*(exp(I*(d*x+c))+I))^(1/2),1/2*2^(1/2))+I*EllipticF((-I*(
exp(I*(d*x+c))+I))^(1/2),1/2*2^(1/2)))))*2^(1/2)/(b*exp(I*(d*x+c))/(exp(I*(d*x+c))^2+1))^(1/2)*(b*exp(I*(d*x+c
))*(exp(I*(d*x+c))^2+1))^(1/2)/(exp(I*(d*x+c))^2+1)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 122, normalized size of antiderivative = 1.49 \[ \int \frac {A+B \sec (c+d x)}{\sqrt {b \sec (c+d x)}} \, dx=\frac {-i \, \sqrt {2} B \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} B \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} A \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - i \, \sqrt {2} A \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{b d} \]

[In]

integrate((A+B*sec(d*x+c))/(b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

(-I*sqrt(2)*B*sqrt(b)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + I*sqrt(2)*B*sqrt(b)*weierstr
assPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + I*sqrt(2)*A*sqrt(b)*weierstrassZeta(-4, 0, weierstrassPInv
erse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - I*sqrt(2)*A*sqrt(b)*weierstrassZeta(-4, 0, weierstrassPInverse(-
4, 0, cos(d*x + c) - I*sin(d*x + c))))/(b*d)

Sympy [F]

\[ \int \frac {A+B \sec (c+d x)}{\sqrt {b \sec (c+d x)}} \, dx=\int \frac {A + B \sec {\left (c + d x \right )}}{\sqrt {b \sec {\left (c + d x \right )}}}\, dx \]

[In]

integrate((A+B*sec(d*x+c))/(b*sec(d*x+c))**(1/2),x)

[Out]

Integral((A + B*sec(c + d*x))/sqrt(b*sec(c + d*x)), x)

Maxima [F]

\[ \int \frac {A+B \sec (c+d x)}{\sqrt {b \sec (c+d x)}} \, dx=\int { \frac {B \sec \left (d x + c\right ) + A}{\sqrt {b \sec \left (d x + c\right )}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c))/(b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)/sqrt(b*sec(d*x + c)), x)

Giac [F]

\[ \int \frac {A+B \sec (c+d x)}{\sqrt {b \sec (c+d x)}} \, dx=\int { \frac {B \sec \left (d x + c\right ) + A}{\sqrt {b \sec \left (d x + c\right )}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c))/(b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)/sqrt(b*sec(d*x + c)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)}{\sqrt {b \sec (c+d x)}} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}}{\sqrt {\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \]

[In]

int((A + B/cos(c + d*x))/(b/cos(c + d*x))^(1/2),x)

[Out]

int((A + B/cos(c + d*x))/(b/cos(c + d*x))^(1/2), x)